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Abstract

Free convective boundary layer flow and heat transfer of a fluid with variable viscosity over a porous stretching vertical surface in
presence of thermal radiation is considered. Fluid viscosity is assumed to vary as a linear function of temperature. The symmetry groups
admitted by the corresponding boundary value problem are obtained by using a special form of Lie group transformations viz. scaling
group of transformations. A third-order and a second-order coupled ordinary differential equations corresponding to the momentum
and the energy equations are obtained. These equations are then solved numerically. It is found that the skin-friction decreases and
heat transfer rate increases due to the suction parameter. Opposite nature is noticed in case of blowing. With the increase of tempera-
ture-dependent fluid viscosity parameter (i.e. with decreasing viscosity), the fluid velocity increases but the temperature decreases at a
particular point of the sheet. Due to suction (injection) fluid velocity decreases (increases) at a particular point of the surface. Effects
of increasing Prandtl number as well as radiation parameter on the velocity boundary layer is to suppress the velocity field and the
temperature decreases with increasing value of Prandtl number. Due to increase in thermal radiation parameter, temperature at a point
of the surface is found to decrease.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The study of hydrodynamic flow and heat transfer over
a porous stretching sheet has gained considerable attention
due to its vast applications in the industry and important
bearings on several technological and natural processes.
The production of sheeting material arises in a number of
industrial manufacturing processes and includes both metal
and polymer sheets. It is well known that the flow in a
boundary layer separates in the regions of adverse pressure
gradient and the occurrence of separation has several unde-
sirable effects in so far as it leads to increase in the drag on
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the body immersed in the flow and adversely affects the
heat transfer from the surface of the body. Several methods
have been developed for the purpose of artificial control of
flow separation. Separation can be prevented by suction as
the low-energy fluid in the boundary layer is removed [1,2].
On the contrary, the wall shear stress and hence the friction
drag is reduced by blowing.

Free convective phenomenon has been the object of
extensive research. The importance of this phenomenon is
increasing day by day due to the enhanced concern in sci-
ence and technology about buoyancy induced motions in
the atmosphere, the bodies in water and quasisolid bodies
such as earth. Natural convection flows driven by temper-
ature differences are very much interesting in case of Indus-
trial applications. Buoyancy plays an important role where
the temperature differences between land and air give rise
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Nomenclature

A fluid viscosity variation parameter
F non-dimensional stream function
F* variable
F
0

first-order derivative with respect to g
F
00

second-order derivative with respect to g
F
000

third-order derivative with respect to g
k* absorption coefficient
Pr Prandtl number
p, q variables
qr radiative heat flux
T temperature of the fluid
Tw temperature of the wall of the surface
T1 free-stream temperature
u, t components of velocity in x and y directions
z variable

Greek symbols

a1, a2, a3, a4, a5, a6, a
0
, a

00
transformation parameters

b
0
, b

00
transformation parameters

b volumetric coefficient of thermal expansion
g similarity variable
C Lie-group transformations
j the coefficient of thermal diffusivity
l dynamic viscosity
l* reference viscosity
m* reference kinematic viscosity
w stream function
w* variable
r Stefan–Boltzman constant
q density of the fluid
h non-dimensional temperature
h�; �h variables
h
0

first-order derivative with respect to g
h
00

second-order derivative with respect to g
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to a complicated flow and in enclosures such as ventilated
and heated rooms (Elbashbeshy and Bazid [3]).

So such type of problem, that we are dealing with, is
very much useful to polymer technology and metallurgy.
Cheng and Minkowycz [4] and Cheng [5] studied the free
convective flow in a saturated porous medium. Wilks [6]
had studied the combined forced and free convection flow
along a semi-infinite plate extending vertically upwards
with its leading edge horizontal. Boutros et al. [7] solved
the steady free convective boundary layer flow on a non-
isothermal vertical plate. Recently, any studies were made
on the steady free convective boundary layer flow on mov-
ing vertical plates considering the effect of buoyancy forces
on the boundary layer Chen and Strobel [8], Ramachan-
dran et al. [9], Lee and Tsai [10].

The radiative effects have important applications in phys-
ics and engineering particularly in space technology and
high temperature processes. But very little is known about
the effects of radiation on the boundary layer. Thermal radi-
ation effects may play an important role in controlling heat
transfer in polymer processing industry where the quality of
the final product depends on the heat controlling factors to
some extent. High temperature plasmas, cooling of nuclear
reactors, liquid metal fluids, power generation systems are
some important applications of radiative heat transfer from
a vertical wall to conductive gray fluids. The effect of radia-
tion on heat transfer problems have studied by Hossain and
Takhar [11], Takhar et al. [12], Hossain et al. [13].

In all of the above mentioned studies, fluid viscosity was
assumed to be constant. However, it is known that the
physical properties of fluid may change significantly with
temperature. For lubricating fluids, heat generated by the
internal friction and the corresponding rise in temperature
affects the viscosity of the fluid and so the fluid viscosity
can no longer be assumed constant. The increase of tem-
perature leads to a local increase in the transport phenom-
ena by reducing the viscosity across the momentum
boundary layer and so the heat transfer rate at the wall is
also affected. Therefore, to predict the flow behaviour accu-
rately it is necessary to take into account the viscosity var-
iation for incompressible fluids. Gary et al. [14] and Mehta
and Sood [15] showed that, when this effect is included the
flow characteristics may changed substantially compared
to the constant viscosity assumption. Recently Mukhopad-
hyay et al. [16] investigated the MHD boundary layer flow
with variable fluid viscosity over a heated stretching sheet.

The present work deals with free convective flow and
radiative heat transfer of viscous incompressible fluid hav-
ing variable viscosity over a stretching porous vertical plate.
The system remains invariant due to some relations among
the parameters of the scaling group of transformations.
Using these invariants, a third-order and a second-order
coupled ordinary differential equations corresponding to
the momentum and the energy equations are derived. These
equations are solved numerically using shooting method.
The effects of the temperature-dependent fluid viscosity
parameter, suction/injection parameter, the influence of
Prandtl number and radiation parameter on velocity and
temperature fields of the fluid are investigated and analysed
with the help of their graphical representations.

2. Equations of motion

We consider a free convective, laminar boundary layer
flow and heat transfer of viscous incompressible fluid over
a porous stretching sheet emerging out of a slit at origin
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Fig. 1. Physical model of boundary layer flow over a vertical stretching surface.
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(x = 0,y = 0) and moving with non-uniform velocity U(x)
in presence of thermal radiation (Fig. 1).

The governing equations of such type of flow are, in the
usual notations,

ou
ox
þ ot

oy
¼ 0; ð1Þ

u
ou
ox
þ t

ou
oy
¼ 1

q
ol
oT

oT
oy

ou
oy
þ l

q
o2u
oy2
þ gbðT � T1Þ; ð2Þ

u
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qcp

o2T
oy2
� 1

qcp

oqr

oy
; ð3Þ

when the viscous dissipation term in the energy equation is
neglected (as the fluid velocity is very low). Here u and t are
the components of velocity respectively in the x and y

directions, l is the coefficient of fluid viscosity, q is the fluid
density (assumed constant), T is the temperature, j is the
thermal conductivity of the fluid, b is the volumetric coef-
ficient of thermal expansion, g is the gravity field, T1 is the
temperature at infinity.

Using Rosseland approximation for radiation (Brewster
[17]) we can write qr ¼ � 4r1

3k�
oT 4

oy where r1 is the Stefan–
Boltzman constant, k* is the absorption coefficient.

Assuming that the temperature difference within the
flow is such that T4 may be expanded in a Taylor series
and expanding T4 about T1 and neglecting higher orders
we get T 4 � 4T 3

1T � 3T 4
1. Therefore, the Eq. (3) becomes
u
oT
ox
þ t

oT
oy
¼ j

qcp

o
2T

oy2
þ 16r1T 3

1
3qcpk�

o
2T

oy2
: ð4Þ
2.1. Boundary conditions

The appropriate boundary conditions for the problem
are given by

u ¼ UðxÞ; t ¼ �V ðxÞ; T ¼ T w at y ¼ 0; ð5Þ
u! 0; T ! T1 as y !1: ð6Þ

where U(x) is the stream wise velocity and V(x) is the veloc-
ity of suction of the fluid, Tw is the wall temperature.

2.2. Method of solution

We now introduce the following relations for u, t and h
as

u ¼ ow
oy
; t ¼ � ow

ox
and h ¼ T � T1

T w � T1
ð7Þ

where u is the stream function.
The stream wise velocity and the suction/injection veloc-

ity are taken as

UðxÞ ¼ cxm; V ðxÞ ¼ V 0x
m�1

2 :

Here c(>0) is constant, Tw is the wall temperature, the
power-law exponent m is also constant. In this study we
take c = 1.



2170 S. Mukhopadhyay, G.C. Layek / International Journal of Heat and Mass Transfer 51 (2008) 2167–2178
The temperature-dependent fluid viscosity is given by
(Batchelor [18]),

l ¼ l�½aþ bðT w � T Þ� ð8Þ

where l* is the constant value of the coefficient of viscosity
far away from the sheet and a, b are constants and b(>0).

For a viscous fluid, Ling and Dybbs [19] suggest a vis-
cosity dependence on temperature T of the form l = l1/
[1 + c (T � T1)] where c is a thermal property of the fluid
and l1 is the viscosity away from the hot sheet. This rela-
tion does not differ at all with our formulation.

The range of temperature, i.e. (Tw � T1) studied here is
(0–23 �C).

Using the relations (6) in the boundary layer Eq. (2) and
in the energy Eq. (3) we get the following equations

ow
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o2w
oxoy

� ow
ox

o2w
oy2

¼ �Am�
oh
oy

o2w
oy2
þ m�½aþ Að1� hÞ� o

3w
oy3
þ gb

A
b

h; ð9Þ

and
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ox
� ow

ox
oh
oy
¼ ð j

qcp

þ 16rT 3
1

3qcpk�
Þ o

2h
oy2

ð10Þ

where A = b(Tw � T1), m� ¼ l�

q .
The boundary conditions equations (5) and (6) then

become

ow
oy
¼ xm;

ow
ox
¼ V 0x

m�1
2 ; h ¼ 1 at y ¼ 0: ð11Þ

ow
oy
! 0; h! 0 as y !1: ð12Þ
2.3. Scaling group of transformations

We now introduce the simplified form of Lie-group
transformations namely, the scaling group of transforma-
tions (Mukhopadhyay et al. [16]),

C : x� ¼ xeea1 ; y� ¼ yeea2 ; w� ¼ weea3 ;

u� ¼ ueea4 ; t� ¼ teea5 ; h� ¼ heea6 : ð13Þ

Eq. (13) may be considered as a point-transformation
which transforms co-ordinates (x,y,w,u,t,h) to the co-
ordinates (x*,y*,w*,u*,t*,h*).

Substituting (13) in (9) and (10) we get,
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� �
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¼ j
qcp
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1
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� �
eeð2a2�a6Þ o

2h�

oy�2
: ð15Þ

The system will remain invariant under the group of trans-
formations C, we would have the following relations
among the parameters, namely

a1 þ 2a2 � 2a3 ¼ 3a2 � a3 � a6 ¼ 3a2 � a3 ¼ �a6

and a1 þ a2 � a3 � a6 ¼ 2a2 � a6:

These relations give a6 ¼ 0; a2 ¼ 1
4
a1 ¼ 1

3
a3.

The boundary conditions yield a4 ¼ ma1 ¼ 1
2
a1; a5 ¼

m�1
2

a1 ¼ � 1
4
a1 (as m ¼ 1

2
).

In view of these, the boundary conditions become

ow�

oy�
¼ x�

1
2;

ow�

ox�
¼ V 0x� �

1
4ð Þ; h� ¼ 1 at y� ¼ 0 ð16Þ

and

ow�

oy�
! 0; h� ! 0 as y� ! 1: ð17Þ

The set of transformations C reduces to

x� ¼ xeea1 ; y� ¼ yee
a1
4 ; w� ¼ wee

3a1
4 ; u� ¼ uee

a1
2 ;

t� ¼ te�e
a1
4 ; h� ¼ h:

Expanding by Taylor’s method in powers of e and keeping
terms up to the order e we get

x� � x ¼ xea1; y� � y ¼ ye
a1

4
;

w� � w ¼ we
3a1

4
; u� � u ¼ ue

a1

2
;

t� � t ¼ �te
a1

4
; h� � h ¼ 0:

In terms of differentials these yield

dx
a1x
¼ dy

a1

4
y
¼ dw

3a1

4
w
¼ du

a1

2
u
¼ dt
� a1

4
t
¼ dh

0
:

Solving the above equations we get,

y�x�
�1
4 ¼ g; w� ¼ x�

3
4 F ðgÞ; h� ¼ hðgÞ: ð18Þ

With the help of these relations, the (14) and (15) become

2F 02 � 3FF 00

¼ �4Am�h0F 00 þ 4ðaþ AÞm�F 000 � 4m�AhF 000 þ 4
gb
b

Ah

ð19Þ

and

4
j

qcp

þ 16rT 3
1

3qcpk�

� �
h00 þ 3F h0 ¼ 0: ð20Þ

The boundary conditions take the following form

F 0 ¼ 1; F ¼ 4V 0

3
; h ¼ 1 at g ¼ 0 ð21Þ
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and

F 0 ! 0; h! 0 as g!1: ð22Þ

Again, we introduce the following transformations for g, F

and h in Eqs. (19) and (20):

g ¼ ðgb=bÞa1m�b1g�; F ¼ ðgb=bÞa
0
1m�b

0
1 F �;

h ¼ ðgb=bÞa
00
1 m�b

00
1 �h: ð23Þ

Taking F* = f and �h ¼ h the Eqs. (19) and (20) finally take
the following form:

4ðaþ AÞf 000 � 4Ahf 000 � 4Ah0f 00 þ 4Ahþ 3ff 00 � 2f 0
2 ¼ 0;

ð24Þ
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where Pr ¼ m�qcp

j ¼
l�cp

j is the Prandtl number, N ¼ jk�

4rT 3
1

is

the radiation parameter. The boundary conditions take
the following forms

f 0 ¼ 1; f ¼ S; h ¼ 1 at g� ¼ 0 ð26Þ

and

f 0 ! 0; h! 0 as g� ! 1 ð27Þ
where S ¼ 4

3
V 0ðgb

b Þ
�1
4 m
�1
2 , S > 0 corresponds to suction and

S < 0 corresponds to blowing.
–0.1
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3. Numerical method for solution

The above Eqs. (24) and (25) along with boundary con-
ditions are solved by converting them to an initial value
problem. We set

f 0 ¼ z; z0 ¼ p; h0 ¼ q; ð28Þ

p0 ¼ ð2z2 � 3fp � 4Ahþ 4ApqÞ=ð4ðaþ A� AhÞÞ;

q0 ¼ � 3

4
Pr fq= 1þ 4

3N

� �
: ð29Þ

with the boundary conditions

f ð0Þ ¼ S; f 0ð0Þ ¼ 1; hð0Þ ¼ 1: ð30Þ
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To integrate Eqs. (28) and (29) as an initial value problem
we require a value for p(0), i.e. f 00(0) and q(0), i.e. h0(0) but
no such values are given in the boundary. The suitable
guess values for f 00(0) and h0(0)are chosen and then integra-
tion is carried out. We compare the calculated values for f 0

and h at g = 6 (say) with the given boundary condition
f 0(6) = 0 and h(6) = 0 and adjust the estimated values,
f 00(0) and h0(0), to give a better approximation for the
solution.

We take the series of values for f 00(0) and h0(0), and
apply the fourth-order classical Runge–Kutta method with
step-size h = 0.01. The above procedure is repeated until
we get the results up to the desired degree of accuracy,
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4. Results and discussion

To analyse the results, numerical computation has been
carried out using the method described in the previous sec-
tion for various values of the temperature-dependent vis-
cosity parameter (A), suction/injection parameter (S),
Prandtl number (Pr) and radiation parameter (N). For
illustrations of the results, numerical values are plotted in
the Figs. 1a–10. In all cases we take a = 1.

Figs. 1a and 1b exhibit the horizontal velocity profiles
for several values of A (A = �0.1,0,0.5, 1) with Pr = 0.5
in presence of suction (S = 0.5) and in presence of injection
(S = �0.5), respectively when N = 0.1. In each case, hori-
zontal velocity is found to increase with the increase of
the temperature-dependent fluid viscosity parameter A at
S
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Fig. 3a. Variation of horizontal velocity f 0(g) with g for seve
a particular value of g except very near the wall as well
as far away of the wall (at g = 6). This means that the
velocity decreases (with the increasing value of g) at a
slower rate with the increase of the parameter A at very
near the wall as well as far away of the wall. This can be
explained physically as the parameter A increases, the fluid
viscosity decreases resulting the increment of the boundary
layer thickness.

In Figs. 2a and 2b, variations of temperature field h(g)
with g for several values of A (with Pr = 0.5 and
N = 0.1) in presence of suction (S = 0.5) and in presence
of blowing (S = �0.5) are shown, respectively. It is
very clear from these two figures that the temperature
decreases with the increasing value of A. The increase of
temperature-dependent fluid viscosity parameter (A) makes
=1
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Fig. 4b. Variation of temperature h(g) with g for several values of S when a = 1, A = 1, Pr = 0.5 and N = 0.1.
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decrease of thermal boundary layer thickness, which results
in decrease of temperature profile h(g).

Decrease in h(g) means a decrease in the velocity of the
fluid particles. So in this case the fluid particles undergo
two opposite forces: one increases the fluid velocity due
to decrease in the fluid viscosity (with increasing A) and
other decreases the fluid velocity due to decrease in temper-
ature h(g) (since h decreases with increasing A). Near the
surface, as the temperature h is high so the first force dom-
inates and far away from the surface h is low and so the
second force dominates here.

Now we concentrate in the velocity and temperature dis-
tribution for the variation of suction or injection parameter
S in the absence and presence of temperature-dependent
fluid viscosity parameter A.
Fig. 3a presents the effects of suction or blowing on the
horizontal fluid velocity when the fluid viscosity is uniform,
i.e. A = 0. With the increasing value of the suction (S > 0)
[A = 0, Pr = 0.5 and N = 0.1], the horizontal velocity is
found to decrease (Fig. 3a), i.e. suction causes to decrease
the velocity of the fluid in the boundary layer region. The
physical explanation for such a behaviour is as follows.
In case of suction, the heated fluid is pushed towards the
wall where the buoyancy forces can act to retard the fluid
due to high influence of the viscosity. This effect acts to
decrease the wall shear stress. But the fluid velocity
increases with the increasing value of the injection param-
eter (S < 0) at a particular value of g. In this case, i.e. when
stronger blowing is provided, the heated fluid is pushed far-
ther from the wall where the buoyancy forces can act to
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accelerate the flow with less influence of viscosity. Fig. 3b
represents the nature of the velocity curve with variable
suction or injection parameter (S) in presence of variable
fluid viscosity (A = 1) when Pr = 0.5 and N = 0.1. Same
effects [as noticed in Fig. 3a] of suction or blowing are
observed.

Fig. 4a exhibits that the temperature h(g) in boundary
layer also decreases with the increasing suction parameter
S (S > 0) (the fluid is of uniform viscosity, i.e. A = 0)
(Pr = 0.5 and N = 0.1) whereas the temperature at a partic-
ular point of the sheet increases with the increasing value of
the injection parameter (S < 0). The thermal boundary
layer thickness decreases (increases) with the suction (injec-
tion) parameter S which causes an increase (decrease) in
the rate of heat transfer. The explanation for such behav-
iour is that the fluid is brought closer to the surface and
reduces the thermal boundary layer thickness in case of
suction. Fig. 4b is the graphical representation of the
behaviour of the temperature field with variable suction
or injection parameter S when the fluid viscosity is non-
uniform (A = 1) [Pr = 0.5 and N = 0.1].

The effects of Prandtl number on the boundary layer
flow velocity and temperature field are given in Figs. 5,6
for A = 0.5, S = 0.5 and N = 0.1. Fig. 5 gives the horizon-
tal velocity profile for several values of the Prandtl number
(Pr). The velocity profiles show a decrease with the increase
of Prandtl number (Pr). Increase in Prandtl number means
increase of fluid viscosity which causes a decrease in the
flow velocity.

In Fig. 6, the variation of temperature h(g) vs. g for sev-
eral values of Pr is given. It is noticed that temperature
decreases with the increasing value of Prandtl number
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Fig. 9. Variation of skin-friction coefficient [�f 00(0)] with N for several values of Pr when a = 1, A = 0.5 and S = 0.
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Fig. 7. Variation of horizontal velocity f 0(g) with g for several values of N when a = 1, A = 0.5, S = 0 and Pr = 0.7.
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because thermal boundary layer thickness decreases due to
increase in Pr.

The effect of radiation parameter (N) on the velocity
boundary layer characteristics is shown in Fig. 7 for
A = 0.5, in the absence of suction (S = 0) [Pr = 0.7]. The
velocity profiles show a decrease with the increase of radi-
ation parameter (N). In Fig. 8, the variation of temperature
h(g) with g for various values of the radiation parameter N

(N = 1,2,3,5) with A = 0.5, Pr = 0.7 in the absence of suc-
tion is given. It is noticed from the figure that the temper-
ature decreases with the increasing value of the radiation
parameter N. The effect of radiation parameter N is to
reduce the temperature significantly in the flow region.
The increase in radiation parameter means the release of
heat energy from the flow region and so the fluid tempera-
ture decreases as the thermal boundary layer thickness
becomes thinner.

Figs. 9 and 10 depict the variations of the skin-friction
coefficient [�f00(0)] and rate of heat transfer [�h0(0)] in terms
of Nusselt number with radiation parameter (N) for differ-
ent values of Prandtl number [Pr = 0.3, 0.7,1,1.5]. From
these two figures it is noticed that both the skin-friction
and rate of heat transfer increase with the increasing values
of Prandtl number.

5. Conclusion

The present study gives the similarity solutions for
steady free convective boundary layer flow and heat trans-
fer over a porous stretching surface with power-law veloc-
ity distribution in presence of thermal radiation and
temperature-dependent fluid viscosity. The effect of
increasing temperature-dependent fluid viscosity parameter
on a viscous incompressible fluid is to increase the flow
velocity which in turn, causes the temperature to decrease.
The results pertaining to the present study indicate that due
to suction the skin-friction decreases while the rate of heat
transfer increases. The temperature in the boundary layer
decreases (increases) due to suction (blowing). Horizontal
velocity as well as temperature decreases with the increase
in Prandtl number and radiation parameter. The rate of
heat transfer increases with the increasing values of Prandtl
number and radiation parameter. The boundary layer edge
is reached faster as Pr increases.
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